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Abstract

This research focuses on the development of an intelligent diagnostic system for rotating machinery. The
system is composed of a signal processing module and a state inference module. In the signal processing
module, the recursive least square (RLS) algorithm and the Kalman filter are exploited to extract the order
amplitudes of vibration signals, followed by fault classification using the fuzzy state inference module. The
RLS algorithm and Kalman filter provide advantages in order tracking over conventional Fourier-based
techniques in that they are insensitive to smearing problems arising from closely spaced orders or crossing
orders. On the basis of thus obtained order features, the potential fault types are then deduced with the aid
of a state inference engine. Human diagnostic rules are fuzzified for various common faults, including the
single fault and double fault situations. This system is implemented on the platform of a floating point
digital signal processor, where a photo switch and an accelerometer supply the shaft speed and acceleration
signals, respectively. Experiments were carried out for a rotor kit and a practical four-cylinder engine to
show the effectiveness of the proposed system in tracking the rotating order with precise inference.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating machinery represent an important class of mechanical systems. To name a few,
compressors, pumps, fans, motors, generators and engines all fall into this category. Many kinds
of rotating machines such as those found in modern semiconductor industry are very costly to
maintain and any malfunction of which could cause tremendous loss and hazard to the industry.
It is then highly desirable to establish an on-line monitoring and diagnostic mechanism that is
capable of detecting anomalies and identifying fault types of machines at the very early stage. This
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is also the widespread notion of preventive maintenance (PM) that prevents industries from
unnecessary maintenance cost and even disastrous results.

Faults commonly found in rotating machinery such as unbalance, misalignment, looseness,
bearing fault, gear fault, resonance, etc. [1] except resonance, could often be related to rotating
speed. These faults may produce excessive vibration at the shaft speed as well as its multiples. The
conditions of rotating machine can thus be monitored by measuring the vibration signals at
certain locations, e.g., bearing mounts. The conventional method of rotor diagnosis is to examine
the vibration spectrum at a fixed speed. However, the information thus obtained is only partial
because some faults do not respond significantly at the fixed operation speed. As a more
comprehensive approach to the diagnosis of rotor faults, the order tracking technique that exploits
vibration signals, supplemented with information of shaft speed, serves as a useful tool for
diagnosis of rotating machinery. Conventional methods of order tracking are primarily based on
the Fourier analysis, where narrow-band spectra of the frequency-varying signals are calculated
by using proper time-windowing [2]. Re-sampling process is generally required in the fast Fourier
transform (FFT)-based methods to compromise between time and frequency resolution for
various shaft speeds. However, conventional FFT methods suffer from a number of
shortcomings. In particular, smearing problem may arise in two situations. First, orders can be
closely spaced, particularly at low shaft speed. Second, undesirable beating may occur due to
crossing of speed-dependent orders and speed-independent resonance. In addition, conventional
methods are ineffective for the applications involving multiple independent shaft speeds. For
example, the speed of crank-shaft of an engine and the speed of cooling fans are independent. If
one calculates the orders based on either speed, the signal related to other speed would appear as
uncorrelated noise and adversely degrade the tracking accuracy.

In order to avoid the aforementioned problems encountered in conventional method, model-
based methods have been proposed. A representative example is the Vold–Kalman method [2–4].
In the method, the order tracking problem is formulated in terms of state space models. Order
amplitudes are calculated by using the least-squares approach. The method is based on a fixed
sampling rate and generally implemented as a post-processing scheme. More accurate interpretation
of vibration signature can be drawn by converting frequency spectra into the so-called order spectra,
with order defined as the frequency normalized by the shaft speed. With the order estimation of the
vibration signals, the system faults can be accordingly detected and analyzed.

In this paper, a high resolution, adaptive, on-line and intelligent order tracking system is
presented. The system is composed of a signal processing module and a state inference module. In
the signal processing module, the recursive least square (RLS) algorithm and the Kalman filter are
exploited to extract the order amplitudes of vibration signals. The RLS algorithm and Kalman
filter provide advantages in order estimation over conventional Fourier-based techniques in that
they are insensitive to smearing problems arising from closely spaced orders or crossing orders.
The proposed method is also capable of tracking the orders due to multiple independent shaft
speeds. These two algorithms are adaptive in nature, making them well suited for varying speed
situations. In the state inference module, an intelligent fault classification procedure is conducted
using fuzzy logic, in an attempt to mimic an experienced engineer. Human diagnostic rules are
fuzzified for various common faults, including the single fault and double fault situations.
Previous work by Mechefske [5] and Pantelelis et al. [6] using fuzzy logic and neural networks for
fault diagnosis is also along the same line in the present paper.
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This system is implemented on the platform of a floating point digital signal processor (DSP),
where a photo switch and an accelerometer supply the shaft speed and acceleration signals,
respectively. Experiments were carried out for a rotor kit and a practical four-cylinder engine to
show the effectiveness of the proposed system in tracking the rotating order with high resolution
and precise inference. The experimental results and possible extension of this work will be
discussed in the paper.

2. Adaptive order feature extraction

2.1. RLS order tracking algorithm

The vibration signal generated by rotating machinery can generally be represented as the
superposition of sinusoids. For instance, the signal xðtÞ containing k orders generated by a
rotating shaft can be written as

xðtÞ ¼ A1 cos½yðtÞ þ f1� þ A2 cos½2yðtÞ þ f2� þ?þ Ak cos½kyðtÞ þ fk�; ð1Þ

where Ak and fk denote the amplitude and phase, respectively, of the kth order, and yðtÞ is the
angular displacement. By the trigonometric identity, Eq. (1) can be expanded as

xðtÞ ¼A1I cos½yðtÞ� � A1Q sin½yðtÞ� þ A2I cos½2yðtÞ� � A2Q sin½2yðtÞ�

þ ?þ AkI cos½kyðtÞ� � AkQ sin½kyðtÞ�; ð2Þ

where AkI and AkQ denote the in-phase and quadrature components, respectively. Here

AkI ¼ Ak cosfk; AkQ ¼ Ak sin fk: ð3Þ

The amplitude of the kth order can be written as

jAkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

kIi þ A2
kQ

q
: ð4Þ

In light of the special structure of the signal described in Eq. (2), the order tracking problem can
be recast into a parameter identification problem. After discretization,

eðnÞ ¼ xðnÞ � wTðnÞuðnÞ; ð5Þ

where n is the discrete-time index,

uTðnÞ ¼ ½cos½yðnÞ� � sin½yðnÞ� cos½2yðnÞ� � sin½2yðnÞ� ? cos½kyðnÞ� � sin½kyðnÞ�� ð6Þ

is the regressor,

wTðnÞ ¼ ½A1I ðnÞ A1QðnÞ A2I ðnÞ A2QðnÞ ? AkI ðnÞ AkQðnÞ� ð7Þ

is the parameter vector, and xðnÞ and eðnÞ are the measurement and estimation error, respec-
tively. The solution of #wðnÞ can be found by the method of least-squares with the following cost
function zðnÞ:

zðnÞ ¼
Xn

i¼1

ln�ijeðiÞj2; ð8Þ
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where the forgetting factor 0olp1 weighs exponentially the estimation error from the present to
the past. The RLS method is such a algorithm that calculates the optimal parameters #wðnÞ in
recursive way [7,8]:

kðnÞ ¼
l�1Pðn � 1ÞuðnÞ

1þ l�1uHðnÞPðn � 1ÞuðnÞ
; ð9Þ

eðnÞ ¼ xðnÞ � #wHðn � 1ÞuðnÞ; ð10Þ

#wðnÞ ¼ #wðn � 1Þ þ kðnÞe�ðnÞ; ð11Þ

PðnÞ ¼ l�1Pðn � 1Þ � l�1kðnÞuHðnÞPðn � 1Þ: ð12Þ

In the procedure above, the matrix PðnÞ is the inverse of auto-correlation matrix of input vector u;
eðnÞ is the a priori estimation error, and kðnÞ is the gain vector. To initialize the RLS algorithm,
the initial conditions are generally taken to be: #wð0Þ ¼ 0M	1 (M is the number of parameters),
Pð0Þ ¼ d�1I (I is a M 	 M identity matrix), and d is a small positive constant.

The forgetting factor l is extremely crucial to the convergence of the RLS algorithm. Small
values of l enable fast tracking of signals, but could diverge easily during adaptation, whereas
large values ensure stable adaptation, but the convergence performance is poor. In the present
work, the following dynamic scheme is employed to adjust l in response to the status of
convergence:

l ¼
2ð1� f Þ

E3
jeðnÞj3 �

3ð1� f Þ
E2

jeðnÞj2 þ 1 if 0pjeðnÞjpE;

f if jeðnÞjoE;

8<
: ð13Þ

where f and E are two user-specified constants. The factor l varies between f and unity. The
constant f is generally chosen to be close to unity for stability of the algorithm, e.g., f ¼ 0:995: On
the other hand, one-half of the maximum signal amplitude would be a good choice of the constant
E. Using this dynamic scheme, tracking would be fast (small l) in the early stage when error is
large, then the adaptation process is slowed down (large l) as the error decreases until the
threshold E, as depicted in Fig. 1. A sample result of the order amplitude of a rotor obtained using
the RLS algorithm with dynamic forgetting factor is shown in Fig. 2(a)–(d), where (a) is the 1st
order, (b) is the 2nd order, (c) is the 3rd order, and (d) is the 4th order.

2.2. Order tracking by recursive Kalman filtering

There are two key equations in the order tracking method based on the Kalman filter [7,9]. The
first equation is called the process equation:

xðn þ 1Þ ¼ Fðn þ 1; nÞxðnÞ þ v1ðnÞ; ð14Þ

where Fðn þ 1; nÞ is a known M 	 M state transition matrix that relates the state of the system at
times n þ 1 and n: The M 	 1 vector v1ðnÞ represents a zero-mean and white process noise. The
second equation is called the measurement equation:

yðnÞ ¼ CðnÞxðnÞ þ v2ðnÞ; ð15Þ
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Fig. 1. Dynamic forgetting factor in the RLS algorithm adjusted according to the estimation error.

Fig. 2. Order amplitudes estimated in an engine run up test, using the RLS algorithm with dynamic forgetting factor.

(a) The 1st order; (b) the 2nd order; (c) the 3rd order; (d) the 4th order.
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where CðnÞ is the N 	 M measurement matrix. The N 	 1 vector v2ðnÞ is also a zero-mean and
white measurement noise. For our order tracking problem, the measurement equation can be
written explicitly as

yðnÞ �
XN

i¼�N

AiðnÞ exp½ jyiðnÞ� ¼ v2ðnÞ; ð16Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
; AiðnÞ is the complex order amplitude, and AiðnÞ exp½ jyiðnÞ� is the ith amplitude

modulated complex order and yiðnÞ is the angular displacement. It is assumed in this paper that
the order amplitude AiðnÞ follows a second order autoregressive (AR) model:

HðzÞAiðzÞ ¼ V1ðzÞ; ð17Þ

where

HðzÞ ¼
1

1� 2z�1 þ 1z�2
ð18Þ

and V1ðzÞ is the z transform of v1ðnÞ: Note that this model has a double pole at z ¼ 1; which means
that it is capable of tracking a ramp input. Consequently, the state transition matrix can be
written as

Fðn þ 1; nÞ ¼

P 0 ? 0

0 & 0 ? 0

0 0 P 0 0

0 ? 0 & 0

0 ? 0 P

2
6666664

3
7777775
; ð19Þ

where matrix

P ¼
2 �1

1 0

" #
ð20Þ

and 0 is 2	 2 zero matrix. The measurement matrix can be written as

CðnÞ ¼ ½exp½ jykðnÞ� 0 ? exp½ jy0ðnÞ� 0 ? exp½ jy�kðnÞ� 0�: ð21Þ

The aforementioned parameter identification problem can be recursively solved by using the
following algorithm [7,9]:

GðnÞ ¼ Fðn þ 1; nÞKðn; n � 1ÞCHðnÞ½CðnÞKðn; n � 1ÞCHðnÞ þ Q2ðnÞ��1; ð22Þ

aðnÞ ¼ yðnÞ � CðnÞ #xðn j yn�1Þ; ð23Þ

#xðn þ 1 j ynÞ ¼ Fðn þ 1; nÞ #xðn j yn�1Þ þGðnÞaðnÞ; ð24Þ

KðnÞ ¼ Kðn; n � 1Þ � Fðn; n þ 1ÞGðnÞCðnÞKðn; n � 1Þ: ð25Þ

Kðn þ 1; nÞ ¼ Fðn þ 1; nÞKðnÞFHðn þ 1; nÞ þQ1ðnÞ; ð26Þ
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To initialize the recursive Kalman filtering process, the initial conditions are generally taken to be
#xð1 j y0Þ ¼ 0ð4kþ2Þ	1 (4k þ 2 is the number of parameters, AiðnÞ), Kð1; 0Þ ¼ I (I is a ð4k þ 2Þ 	
ð4k þ 2Þ identity matrix).

Like RLS algorithm, prior information of the number of order is required in applying this
method. Technically, this can be obtained by a preliminary scan by using conventional order
tracking methods. If this can be done, the proposed technique should provide results with
improved accuracy.

Although the Kalman filter algorithm is more computationally intensive than the RLS method,
the convergence of the former algorithm is generally better in terms of speed and stability than the
latter one. An approach to reducing the computation loading of the Kalman filter algorithm is to
down sample the input signal. In Fig. 3, a sample result of engine test suggests the down sampling
action up to 12.5% did not seem to produce any significant effect on the estimation of the order
amplitude. Owing to its superior performance, only Kalman filter method is utilized to carry out
order tracking in the following presentation.

3. Fuzzy-based intelligent diagnostic interface

With the features extracted the RLS or Kalman filter algorithms, an intelligent inference
procedure based on fuzzy logic can then be used to classify the machine faults. Fuzzy logic
seeks to reach a decision following linguistic rules as an experienced human dealing with
fault diagnosis problems [10–13]. Membership functions and fuzzy rules must be established
before the condition of machine is diagnosed. In this paper, a triangular and a p membership
functions are used, as shown in Fig. 4. The definition of the p membership function is given as
follows:

pðx; a; bÞ ¼
1

1þ ððx � aÞ=bÞ2
; ð27Þ

where a is the average and b ¼ n 	 S:D: of the selected feature of each order. To characterize the
parameters of the membership functions, statistical data analysis is required to find the mean
value (a) and standard deviation (S.D.) of each order feature. The averages of each order 7h

times the standard deviation are taken as the upper and lower limits of the fuzzy membership
functions [5]. The root-mean-square (rms) values of order amplitudes are selected as the input
feature to the fuzzy logic inference module:

x2k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H

XH

h¼1
A2kðhÞ

� �r
; ð28Þ

where x2k is the rms amplitude of the 2kth order and A2k is the 2kth order amplitude, and H is the
number of sample.

Next, the fuzzy rules are established. Generically, a linguistic variable x in a universe of

discourse U is characterized by TðxÞ ¼ fT1
x ;T

2
x ;y;Tk

xg and MðxÞ ¼ fM1
x ;M

2
x ;y;Mk

xg; where
TðxÞ is the term set of x: For example, TðxÞ may be taken as fgood; fair; alarmg in our
experiment. That is, the set of linguistic values of x with each value Ti

x being a fuzzy number with
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Fig. 4. Fuzzy membership functions: (a) Triangular membership function; (b) p membership function.

Fig. 3. The effect of down sampling on the estimation of the 4th order amplitude in an engine run up test, using the

Kalman filter algorithm.
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Motor
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Fig. 6. Experimental arrangement of the rotor kit.
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Fig. 5. The overall framework of the intelligent order tracking system, including the order feature extraction module

and the fuzzy logic inference module.

M. Bai et al. / Journal of Sound and Vibration 280 (2005) 699–718 707



membership function Mi
x are defined on U : The fuzzy rules take the following forms:

R1: IF x1 is T1
x1

and x2 is T1
x2

THEN y is T1
y :

R2: IF x1 is T2
x1

and x2 is T2
x2

THEN y is T2
y ; etc:

Then the firing strength of rules R1 and R2 are defined as p1 and p2; respectively. For example, p1

is defined as

p1 ¼ M1
x1
ðx1Þ4M1

x2
ðx2Þ ¼ minðM1

x1
ðx1Þ;M2

x2
ðx2ÞÞ: ð29Þ

According to the calculated firing strength of fuzzy rules, the fault with maximal probability is
found, and the inference cycle is completed. The fuzzy-based order tracking system is
schematically summarized in the flow chart of Fig. 5.
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Table 1

Fuzzy rules of single-fault for the rotor system

IF THEN

1X 2X 3X 4X 5X 9X Norm Mis Los Unbl REB

Good Good Good Good Good Good X

Alm2 Alm2 Alm1 Good Good Good X

Alm2 Alm2 Alm2 Alm2 Alm2 Good X

Alm1 Good Good Good Good Good X

Alm1 Alm1 Alm1 Fair Fair Alm1 X

Note: Good, good; Fair, fair; Alm1, alarm1 signifies ‘‘minor fault condition’’; Alm2, alarm2 signifies ‘‘major fault

condition’’; Norm, normal; Mis, misalignment; Los, looseness; Unbl, unbalance; REB, rolling element bearing fault.

Fig. 7. Shaft speed schedule of the rotor run up test.
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4. Experimental investigations

In order to verify the proposed intelligent order tracking system, experimental investigations
were undertaken for a rotor kit and a car engine.

4.1. Rotor kit

As a preliminary verification of the proposed system, a rotor kit was employed in experiments
(Fig. 6). An AC servomotor was used to drive the rotor stand. Located at the middle of the axle
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Fig. 8. Order amplitudes estimated in a rotor run up test, using the Kalman filter algorithm under the unbalance

condition. (a) The 1st order; (b) the 2nd order; (c) the 3rd order; (d) the 4th order.

Table 2

Fuzzy rules of double-fault for the rotor system

IF THEN

1X 2X 3X 4X 5X 9X Norm Mis Los Unbl REB

Good Good Good Good Good Good X

Alm2 Alm2 Alm2 Alm2 Alm2 Fair X X

Alm2 Alm2 Alm1 Good Good Good X X

Alm2 Alm2 Alm2 Fair Fair Alm2 X X

Alm2 Alm2 Alm2 Alm2 Alm2 Alm1 X X

Alm2 Alm2 Alm2 Alm2 Alm2 Alm2 X X

Alm2 Alm1 Alm1 Alm1 Alm1 Alm2 X X

Note: Good, good; Fair, fair; Alm1, alarm1 signifies ‘‘minor fault condition’’; Alm2, alarm2 signifies ‘‘major fault

condition’’; Norm, normal; Mis, misalignment; Los, looseness; Unbl, unbalance; REB, rolling element bearing fault.
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was an aluminum circular disc with weight stud to produce the unbalance fault. An accelerometer
was mounted on bearing block. A tachometer was used to measure the rotor speed. The shaft
speed and acceleration signals were sampled by using a digital signal processor (TMS320C32),
and transferred to a Pentium 4 computer to perform order tracking and fault inference.

During a run-up test, the shaft speed is recorded and shown in Fig. 7. With reference to this
speed information, the order amplitude was calculated using the Kalman filter order tracking
technique. The rms extracted order amplitudes served as the input features to the fuzzy logic
inference module. During the training stage, the membership function corresponding to each fault
condition was also determined with the aid of the statistical analysis of the experimental data. In
this work, our five rotor conditions were chosen: normal (Norm), unbalance (Unbl), looseness
(Los), misalignment (Mis) and rolling element bearing damage (REB). The fuzzy rules are based
on the following linguistic descriptions of rotor faults:

Normal: all harmonics have low amplitudes.
Unbalance: the 1st harmonic has very high amplitude.
Looseness: the 1st to 5th harmonics have high amplitudes.
Misalignment: the 1st and 2nd harmonics have high amplitudes.
Ball bearing fault: the 9th harmonic has very high amplitude.

Through these fault conditions, we further combine two single fault conditions into double-
faults conditions. Thus, there are 12 conditions in a total, as summarized Tables 1 and 2 for the
single fault and double fault conditions, respectively.

Figs. 8(a)–(d) show the amplitudes of the first four orders estimated using the Kalman filter
algorithms under the unbalance condition. As expected, the first order has significantly higher
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Table 3

Faults n

2 3 4 6 8 10 12 14 16 18

(a) Probability of inference using the triangular membership function under the unbalance condition

Norm 0 0 0 0 0 0 0.010 0.132 0.241 0.325

Unbl 0.258 0.505 0.629 0.753 0.814 0.852 0.876 0.894 0.907 0.918

Los 0 0 0 0.057 0.251 0.401 0.501 0.572 0.626 0.667

Mis 0 0 0 0 0 0.122 0.269 0.373 0.451 0.510

REB 0 0 0 0 0 0 0 0 0.075 0.178

(b) Probability of inference using the p membership function with n ¼ 4

Test faults Confidence level of faults

Norm Unbl Los Mis REB

Norm 0.881 0.023 0.053 0.102 0.032

Unbl 0.095 0.875 0.321 0.172 0.068

Los 0.151 0.123 0.872 0.165 0.052

Mis 0 0 0.002 0.905 0.357

REB 0 0 0.003 0.396 0.882

M. Bai et al. / Journal of Sound and Vibration 280 (2005) 699–718710



amplitude than the others. With the fuzzy inference, the performance indicated as probabilities of
inference is shown in Table 3 for two kinds of membership functions. From Table 3(a), it can be
seen that the probability of correct inference increases with increasing n when the triangular
membership function is used. However, the probability of false classification also increases with
increasing n. This suggests that an optimal choice of n exists in selecting the membership function.
To assess the inference error versus n, the following performance index is calculated using the
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Fig. 9. Performance of fuzzy inference versus the parameter n: (a) Triangular membership function; (b) p membership

function.
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Fig. 11. Firing sequence of the car engine. (a) Normal condition; (b) the 1st plug fire missing; (c) the 1st and 4th plugs

fire missing; (d) the 3rd and 4th plugs fire missing.

Engine 

Torque testerFlywheel Driving axle

Fiber optical sensor

TMS320C32 DSP
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Accelerometer

Fig. 10. Experimental arrangement of a Renault 1400 cc; four cylinder, four stroke car engine.
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triangular membership function:

j ¼
Xm

i¼1

Xk

j¼1

ð pij � #pijÞ
2; ð30Þ

where pij is the probability of the ith test data that is inferred to the jth fault. #pij ; is the true
probability of the ith test data pertaining to the jth fault. The parameters k and m are the numbers
of fault and test pattern, respectively. This performance index versus n is shown in Fig. 9(a). There
is indeed an optimal choice of n for the triangular membership function (n ¼ 8 in this case).

Similar performance analysis is applied to the p membership function. The performance index
versus n plotted in Fig. 9(b) reveals that the optimal choice for the p membership function is
n ¼ 4: Thus, in Table 3(b), we calculate the probability of inference using the p membership
function with n ¼ 4: Overall, the probability of correct inference is significantly higher than the
triangular membership function with n ¼ 5: This is because the p membership function appears
more capable of highlighting the similarity and discounting the dissimilarity of data features than
the triangular membership function.

4.2. Car engine

To verify the practicality of the present order tracking system, a Renault 1400 cc; four-cylinder
and four-stroke engine was employed in the experimental investigation (Fig. 10). Fig. 11 depicts
the firing sequences corresponding to the normal condition and the other three faulty conditions.
The arrows signify which cylinders (indicated as number) that are ignited. The firing sequence
under the normal condition is 1–2–4–3, where two power strokes arise within one revolution. The
other three faulty conditions were selected as the 1st plug fire missing, the 1st and 4th plugs fire
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Fig. 12. Shaft speed schedule of the engine run up test.
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missing, and the 2nd and 3rd plugs fire missing, respectively. These faults are created simply by
disconnecting the spark plugs and the ignition system.

An engine run-up test under the normal condition was then conducted according to the
schedule depicted in Fig. 12. The order amplitudes estimated by using the Kalman filter method is
shown as a contour plot in Fig. 13(a). Clearly visible are the first four orders. Peaks corresponding
to very dark areas seem to align as vertical lines, which suggests that resonance may exist. To see
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Fig. 13. Engine run up test with resonance analysis. (a) Contour plot of the order amplitudes estimated using the

Kalman filter algorithm under the normal condition; (b) order amplitudes normalized with respect to its maximum,

followed by superposition of all time slices of these normalized order onto the frequency axis. The most pronounced

resonance frequencies are located approximately at 77, 125 and 148 Hz:
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Fig. 15. Order amplitudes estimated in an engine run up test, using the Kalman filter algorithm under the 1st plug fire

missing condition. (a) The 1st order; (b) the 2nd order; (c) the 3rd order; (d) the 4th order.

Fig. 14. Order amplitudes estimated in an engine run up test, using the Kalman filter algorithm under the normal

condition. (a) The 1st order; (b) the 2nd order; (c) the 3rd order; (d) the 4th order.
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Fig. 17. Order amplitudes estimated in an engine run up test, using the Kalman filter algorithm under the 3rd and 4th

plugs fire missing condition. (a) The 1st order; (b) the 2nd order; (c) the 3rd order; (d) the 4th order.

Fig. 16. Order amplitudes estimated in an engine run up test, using the Kalman filter algorithm under the 1st and 4th

plugs fire missing condition. (a) The 1st order; (b) the 2nd order; (c) the 3rd order; (d) the 4th order.
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this better, each order is normalized with respect to its maximum, followed by superposition of all
time slices of these normalized order onto the frequency axis. Fig. 13(b) shows the result obtained
using such procedure. In this figure, the most pronounced resonance frequencies are located
approximately at 77, 125 and 148 Hz:

Next, the effect of plug fire missing is investigated. The order amplitudes estimated by using the
Kalman filter method for the normal condition and three faulty conditions are shown in Figs. 14–
17, where (a) is the 1st order, (b) is the 2nd order, (c) is the 3rd order, and (d) is the 4th order.
From these results, the following observations are noted. Under the normal condition, we see that
the second orders tend to have large amplitudes due to the fact that each revolution contains two
power strokes. The 1st and 4th plugs fire missing leads to large amplitudes in the first, third and
fourth orders, and small amplitude in second order. The 3rd and 4th plugs fire missing leads to
large amplitudes in the even multiple orders. On the basis of these observations, the fuzzy logic
rules were established and summarized in Table 4. The test results of inference, indicated as
probabilities, using the p membership function are summarized in Table 5. Probabilities of correct
inference are all greater than 0.9. This justifies the effectiveness of the developed intelligent order
tracking system when applied to practical machines such as a car engine.

5. Conclusions

An intelligent diagnostic system for rotating machinery has been presented in this paper. This
system is capable of identifying the features potentially related to faults with higher resolution
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Table 4

Fuzzy rules for the engine system

IF THEN

1X 2X 3X 4X 6X Norm 1PFM 14PFM 34PFM

Reg Reg Reg Reg Reg X

SL Reg SL SL Reg X

Fair Small Fair Fair Reg X

Reg Reg Reg Fair Fair X

Note: Reg, regular; Fair, fair; Small, too small; SL, somewhat large; Norm, normal; 1PFM, 1st plug fire missing;

14PFM, 1st, 4th plugs fire missing; 34PFM, 3rd, 4th plugs fire missing.

Table 5

Probability of inference using the p membership function with n ¼ 4

Norm 1PFM 14PFM 34PFM

Norm 0.941 0.297 0.198 0.240

1PFM 0.023 0.945 0.008 0.254

14PFM 0.009 0.030 0.936 0.015

34PFM 0.013 0.015 0.004 0.939

Note: Norm, normal; 1PFM, 1st plug fire missing; 14PFM, 1st, 4th plugs fire missing; 34PFM, 3rd, 4th plugs fire

missing.

M. Bai et al. / Journal of Sound and Vibration 280 (2005) 699–718 717



than the conventional Fourier-based methods. The RLS algorithm and the Kalman filter method
are exploited to extract the order features embedded in the vibration signals. Some technical
refinements such as dynamic forgetting factors and AR process model are employed to make these
adaptive filtering methods better suited for the present order tracking problems. Instead of using
conventional human judgment on the order tracking results, an automated intelligent inference
module based on fuzzy logic is utilized. This system is implemented on the platform of a DSP,
where a photo switch and an accelerometer supply the shaft speed and acceleration signals,
respectively. From experiments carried out for a rotor kit and a four-cylinder engine, the
proposed system proved effective in tracking the rotating order with precise inference.

The future perspective of this work is to extend the present system to other machines with more
variety of faults and signals. In addition, more sophisticated methods in the areas of speech and
pattern recognition are being sought, in an attempt to enhance the feature extraction and
intelligent inference.
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